Sports Betting Tips - If Bets and Reverse Teasers

· 10 min read
Sports Betting Tips - If Bets and Reverse Teasers

"IF" Bets and Reverses

I mentioned last week, that if your book offers "if/reverses," it is possible to play those instead of parlays. Some of you might not discover how to bet an "if/reverse." A complete explanation and comparison of "if" bets, "if/reverses," and parlays follows, combined with the situations where each is best..

An "if" bet is strictly what it sounds like. You bet Team A and IF it wins you then place the same amount on Team B. A parlay with two games going off at differing times is a kind of "if" bet where you bet on the initial team, and when it wins you bet double on the second team. With a genuine "if" bet, rather than betting double on the next team, you bet an equal amount on the second team.

You can avoid two calls to the bookmaker and secure the current line on a later game by telling your bookmaker you wish to make an "if" bet. "If" bets may also be made on two games kicking off simultaneously. The bookmaker will wait until the first game is over. If the first game wins, he will put the same amount on the next game though it was already played.

Although an "if" bet is actually two straight bets at normal vig, you cannot decide later that so long as want the next bet. As soon as you make an "if" bet, the next bet cannot be cancelled, even if the next game has not gone off yet. If the initial game wins, you will have action on the second game. Because of this, there is less control over an "if" bet than over two straight bets. Once the two games you bet overlap with time, however, the only way to bet one only if another wins is by placing an "if" bet. Of course, when two games overlap with time, cancellation of the second game bet isn't an issue. It should be noted, that when both games start at differing times, most books won't allow you to complete the second game later. You must designate both teams once you make the bet.

You can create an "if" bet by saying to the bookmaker, "I would like to make an 'if' bet," and, "Give me Team A IF Team B for $100." Giving your bookmaker that instruction will be the identical to betting $110 to win $100 on Team A, and, only if Team A wins, betting another $110 to win $100 on Team B.

If the first team in the "if" bet loses, there is no bet on the second team. No matter whether the next team wins of loses, your total loss on the "if" bet would be $110 when you lose on the initial team. If the first team wins, however, you would have a bet of $110 to win $100 going on the second team. In that case, if the second team loses, your total loss would be just the $10 of vig on the split of both teams. If both games win, you'll win $100 on Team A and $100 on Team B, for a complete win of $200. Thus, the maximum loss on an "if" will be $110, and the maximum win would be $200. That is balanced by the disadvantage of losing the entire $110, instead of just $10 of vig, each time the teams split with the initial team in the bet losing.

As you can see, it matters a good deal which game you put first within an "if" bet. If you put the loser first in a split, then you lose your full bet. If you split but the loser is the second team in the bet, you then only lose the vig.

Bettors soon found that the way to avoid the uncertainty due to the order of wins and loses would be to make two "if" bets putting each team first. Instead of betting $110 on " Team A if Team B," you would bet just $55 on " Team A if Team B." and make a second "if" bet reversing the order of the teams for another $55.  casino betvisa  would put Team B first and Team A second. This type of double bet, reversing the order of the same two teams, is called an "if/reverse" or sometimes only a "reverse."

A "reverse" is two separate "if" bets:

Team A if Team B for $55 to win $50; and

Team B if Team A for $55 to win $50.

You don't have to state both bets. You merely tell the clerk you need to bet a "reverse," the two teams, and the amount.

If both teams win, the result would be the identical to if you played a single "if" bet for $100. You win $50 on Team A in the initial "if bet, and then $50 on Team B, for a total win of $100. In the next "if" bet, you win $50 on Team B, and then $50 on Team A, for a total win of $100. Both "if" bets together create a total win of $200 when both teams win.

If both teams lose, the result would also function as same as if you played a single "if" bet for $100. Team A's loss would cost you $55 in the initial "if" combination, and nothing would go onto Team B. In the next combination, Team B's loss would set you back $55 and nothing would look at to Team A. You'll lose $55 on each one of the bets for a complete maximum loss of $110 whenever both teams lose.

The difference occurs when the teams split. Instead of losing $110 once the first team loses and the second wins, and $10 when the first team wins however the second loses, in the reverse you'll lose $60 on a split whichever team wins and which loses. It works out this way. If Team A loses you will lose $55 on the initial combination, and have nothing going on the winning Team B. In the second combination, you will win $50 on Team B, and have action on Team A for a $55 loss, producing a net loss on the second combination of $5 vig. The increased loss of $55 on the first "if" bet and $5 on the second "if" bet gives you a combined loss of $60 on the "reverse." When Team B loses, you will lose the $5 vig on the initial combination and the $55 on the second combination for the same $60 on the split..

We have accomplished this smaller loss of $60 rather than $110 once the first team loses with no decrease in the win when both teams win. In both the single $110 "if" bet and both reversed "if" bets for $55, the win is $200 when both teams cover the spread. The bookmakers could not put themselves at that type of disadvantage, however. The gain of $50 whenever Team A loses is fully offset by the extra $50 loss ($60 rather than $10) whenever Team B is the loser. Thus, the "reverse" doesn't actually save us hardly any money, but it does have the benefit of making the risk more predictable, and preventing the worry concerning which team to put first in the "if" bet.

(What follows is an advanced discussion of betting technique. If charts and explanations offer you a headache, skip them and simply write down the guidelines. I'll summarize the guidelines in an an easy task to copy list in my next article.)



As with parlays, the overall rule regarding "if" bets is:

DON'T, if you can win more than 52.5% or even more of your games. If you cannot consistently achieve an absolute percentage, however, making "if" bets whenever you bet two teams can save you money.

For the winning bettor, the "if" bet adds some luck to your betting equation it doesn't belong there. If two games are worth betting, they should both be bet. Betting using one shouldn't be made dependent on whether or not you win another. On the other hand, for the bettor who includes a negative expectation, the "if" bet will prevent him from betting on the next team whenever the initial team loses. By preventing some bets, the "if" bet saves the negative expectation bettor some vig.

The $10 savings for the "if" bettor results from the fact that he could be not betting the next game when both lose. When compared to straight bettor, the "if" bettor comes with an additional expense of $100 when Team A loses and Team B wins, but he saves $110 when Team A and Team B both lose.

In summary, anything that keeps the loser from betting more games is good. "If" bets reduce the number of games that the loser bets.

The rule for the winning bettor is exactly opposite. Whatever keeps the winning bettor from betting more games is bad, and therefore "if" bets will cost the winning handicapper money. When the winning bettor plays fewer games, he has fewer winners. Understand that the next time someone lets you know that the best way to win is to bet fewer games. A smart winner never really wants to bet fewer games. Since "if/reverses" work out exactly the same as "if" bets, they both place the winner at an equal disadvantage.

Exceptions to the Rule - Whenever a Winner Should Bet Parlays and "IF's"
As with all rules, you can find exceptions. "If" bets and parlays ought to be made by successful with a positive expectation in mere two circumstances::

If you find no other choice and he must bet either an "if/reverse," a parlay, or a teaser; or
When betting co-dependent propositions.
The only time I could think of you have no other choice is if you are the best man at your friend's wedding, you are waiting to walk down the aisle, your laptop looked ridiculous in the pocket of one's tux so you left it in the automobile, you only bet offshore in a deposit account without line of credit, the book includes a $50 minimum phone bet, you like two games which overlap in time, you grab your trusty cell five minutes before kickoff and 45 seconds before you must walk to the alter with some beastly bride's maid in a frilly purple dress on your own arm, you try to make two $55 bets and suddenly realize you merely have $75 in your account.

Because the old philosopher used to state, "Is that what's troubling you, bucky?" If so, hold your mind up high, put a smile on your own face, search for the silver lining, and create a $50 "if" bet on your two teams. Needless to say you could bet a parlay, but as you will notice below, the "if/reverse" is a superb replacement for the parlay for anyone who is winner.

For the winner, the very best method is straight betting. Regarding co-dependent bets, however, as already discussed, you will find a huge advantage to betting combinations. With a parlay, the bettor gets the benefit of increased parlay probability of 13-5 on combined bets which have greater than the normal expectation of winning. Since, by definition, co-dependent bets should always be contained within exactly the same game, they must be made as "if" bets. With a co-dependent bet our advantage originates from the truth that we make the second bet only IF one of many propositions wins.

It would do us no good to straight bet $110 each on the favorite and the underdog and $110 each on the over and the under. We would simply lose the vig no matter how usually the favorite and over or the underdog and under combinations won. As we've seen, if we play two out of 4 possible results in two parlays of the favorite and over and the underdog and under, we are able to net a $160 win when one of our combinations will come in. When to choose the parlay or the "reverse" when coming up with co-dependent combinations is discussed below.

Choosing Between "IF" Bets and Parlays
Predicated on a $110 parlay, which we'll use for the purpose of consistent comparisons, our net parlay win when one of our combinations hits is $176 (the $286 win on the winning parlay minus the $110 loss on the losing parlay). In a $110 "reverse" bet our net win would be $180 every time one of our combinations hits (the $400 win on the winning if/reverse without the $220 loss on the losing if/reverse).

Whenever a split occurs and the under will come in with the favorite, or over will come in with the underdog, the parlay will eventually lose $110 as the reverse loses $120. Thus, the "reverse" includes a $4 advantage on the winning side, and the parlay has a $10 advantage on the losing end. Obviously, again, in a 50-50 situation the parlay would be better.

With co-dependent side and total bets, however, we are not in a 50-50 situation. If the favorite covers the high spread, it really is more likely that the overall game will review the comparatively low total, and if the favorite fails to cover the high spread, it really is more likely that the game will beneath the total. As we have already seen, once you have a confident expectation the "if/reverse" is a superior bet to the parlay. The actual probability of a win on our co-dependent side and total bets depends upon how close the lines privately and total are to one another, but the proven fact that they're co-dependent gives us a positive expectation.

The point at which the "if/reverse" becomes a better bet compared to the parlay when coming up with our two co-dependent is really a 72% win-rate. This is not as outrageous a win-rate as it sounds. When making two combinations, you have two chances to win. You only have to win one out of the two. Each of the combinations has an independent positive expectation. If we assume the chance of either the favorite or the underdog winning is 100% (obviously one or another must win) then all we need is a 72% probability that when, for instance, Boston College -38 � scores enough to win by 39 points that the game will go over the full total 53 � at the very least 72% of that time period as a co-dependent bet. If Ball State scores even one TD, then we have been only � point away from a win. A BC cover will result in an over 72% of that time period is not an unreasonable assumption under the circumstances.

In comparison with a parlay at a 72% win-rate, our two "if/reverse" bets will win a supplementary $4 seventy-two times, for a total increased win of $4 x 72 = $288. Betting "if/reverses" may cause us to lose an extra $10 the 28 times that the results split for a complete increased loss of $280. Obviously, at a win rate of 72% the difference is slight.

Rule: At win percentages below 72% use parlays, and at win-rates of 72% or above use "if/reverses."